勾股定理教學設計 勾股定理優(yōu)秀教案
《勾股定理》教學設計
1、讓學生通過對的圖形創(chuàng)造、觀察、思考、猜想、驗證等過程,體會勾股定理的產生過程。
2、通過介紹我國古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學生為祖國的復興努力學習。
3、培養(yǎng)學生數學發(fā)現(xiàn)、數學分析和數學推理證明的能力。
二、教學重難點
利用拼圖證明勾股定理
三、學具準備
四個全等的直角三角形、方格紙、固體膠
四、教學過程
(一) 趣味涂鴉,引入情景
教師:很多同學都喜歡在紙上涂涂畫畫,今天想請大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?
(1)在邊長為1的方格紙上任意畫一個頂點都在格點上的直角三角形。
(2)再分別以這個三角形的三邊向三角形外作3個正方形。
學生活動:先獨立完成,再在小組內互相交流畫法,最后班級展示。
(二)小組探究,大膽猜想
教師:觀察自己所涂鴉的圖形,回答下列問題:
1、請求出三個正方形的面積,再說說這些面積之間具有怎樣的數量關系?
2、圖中所畫的直角三角形的邊長分別是多少?請根據面積之間的關系寫出邊長之間存在的數量關系。
3、與小組成員交流探究結果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數量關系?
4、方法提煉:這種利用面積相等得出直角三角形三邊等量關系的方法叫做什么方法?
學生活動:先獨立思考,再在小組內互相交流探究結果,并猜想直角三角形的三邊關系,最后班級展示。
(三)趣味拼圖,驗證猜想
教師:請利用四個全等的直角三角形進行拼圖。
1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?
2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請寫下自己的推理過程。
學生活動:獨立拼圖,并思考如何利用圖形寫出相應的證明過程,再在組內交流算法,最后在班級展示。
(四)課堂訓練 鞏固提升
教師:請完成下列問題,并上臺進行展示。
1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對邊分別為a,b,c
已知a=6,b=8.求c.
已知c=25,b=15.求a .
已知c=9,a=3.求b.(結果保留根號)
學生活動:先獨立完成問題,再組內交流解題心得,最后上臺展示,其他小組幫助解決問題。
(五)課堂小結,梳理知識
教師:說說自己這節(jié)課有哪些收獲?請從數學知識、數學方法、數學運用等方向進行總結。
《勾股定理》知識點總結
1.勾股定理的內容:如果直角三角形的兩直角邊分別是a、b,斜邊為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方。
注:勾最短的邊、股較長的直角邊、弦斜邊。
勾股定理又叫畢達哥拉斯定理
2.勾股定理的逆定理:
如果三角形中兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。
3.勾股數:
滿足a2 +b2=c2的三個正整數,稱為勾股數.勾股數擴大相同倍數后,仍為勾股數.常用勾股數:3、4、5; 5、12、13;7、24、25;8、15、17。
看了“勾股定理教學設計”