高考數學備考的方法和解題技巧
想要學好高中數學,考試中取得優異的成績,就要掌握解題技巧。那么高考數學備考的方法和解題技巧有哪些呢?以下是小編整理的一些關于高考數學備考的方法和解題技巧,僅供參考。
高考數學答題套路整理
1、三角變換與三角函數的性質問題
解題方法:①不同角化同角;②降冪擴角;③化f(x)=Asin(ωx+φ)+h ;④結合性質求解。
答題步驟:
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
2、解三角形問題
解題方法:
(1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
答題步驟:
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
3、數列的通項、求和問題
解題方法:①先求某一項,或者找到數列的關系式;②求通項公式;③求數列和通式。
答題步驟:
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
4、離散型隨機變量的均值與方差
解題思路:
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
答題步驟:
①定元:根據已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
高考數學解題技巧
1、高考數學選擇題部分答題技巧
高考數學的選擇題部分題型考試的方向基本都是固定的,當你在一輪二輪復習過程中總結出題目的出題策略時,答題就變得很簡單了。
比如立體幾何三視圖,概率計算,圓錐曲線離心率等等試題中都有一些特征,只要掌握思考的切入方法和要點,再適當訓練基本就可以全面突破。
但是如果不掌握核心方法,單純做題訓練就算做很多題目,突破也非常困難,學習就會進入一個死循環,對照答案可以理解,但自己遇到新的題目任然無從下手。
2、高考數學關于大題方面答題技巧
高考數學基本上三角函數或解三角形、數列、立體幾何和概率統計應該是考生努力把分數拿滿的題目。對于較難的原則曲線和導數兩道題目基本要拿一半的分數。
考生復習時可把數學大題的每一道題作為一個獨立的版塊章節,先總結每道大題??嫉膸追N題型,再專項突破里面的運算方法,圖形處理方法以及解題的思考突破口,只要把這些都歸納到位,那么總結的框架套路,都是可以直接秒刷的題目的。
高考數學復習的方法
一、分類記憶法
遇到數學公式較多,一時難于記憶時,可以將這些公式適當分組。例如求導公式有18個,就可以分成四組來記:(1)常數與冪函數的導數(2個);
(2)指數與對數函數的導數(4個);(3)三角函數的導數(6個);(4)反三角函數的導數(6個)。求導法則有7個,可分為兩組來記:(1)和、差、積、商復合函數的導數(4個);(2)反函數、隱函數、冪指數函數的導數(3個)。
二、推理記憶法
許多數學知識之間邏輯關系比較明顯,要記住這些知識,只需記憶一個,其余可利用推理得到,這種記憶稱為推理記憶。
例如,平行四邊形的性質,我們只要記住它的定義,由定義推理得它的任一對角線把它平分成兩個全等三角形,繼而推得它的對邊相等,對角相等,相鄰角互補,兩條對角線互相平分等性質。
三、回想記憶法
高考數學復習在重復記憶某一章節的知識時,不看具體內容,而是通過大腦回想達到重復記憶的目的,這種記憶稱為回想記憶。在實際記憶時,回想記憶法與標志記憶法是配合使用的。