亚洲伊人网站-亚洲伊人精品-亚洲伊人电影-亚洲一在线-久久国产一区二区-久久国产一区

高分網 > 高考 > 高考輔導 >

16高考數學知識點總結

時間: 如英2 高考輔導

  為了幫助高三學子復習數學,今天學習啦小編就與大家分享:16高考數學知識點總結,希望對大家的學習有幫助!

  16高考數學知識點總結一

  公式一:

  設α為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2kπ+α)=sinα (k∈Z)

  cos(2kπ+α)=cosα (k∈Z)

  tan(2kπ+α)=tanα (k∈Z)

  cot(2kπ+α)=cotα (k∈Z)

  公式二:

  設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α與 -α的三角函數值之間的關系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數值之間的關系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  16高考數學知識點總結二

  同角三角函數的基本關系式

  倒數關系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數關系六角形記憶法

  六角形記憶法:(參看圖片或參考資料鏈接)

  構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  (1)倒數關系:對角線上兩個函數互為倒數;

  (2)商數關系:六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。

  (主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。

  (3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。

  16高考數學知識點總結三

  兩角和差公式

  兩角和與差的三角函數公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  二倍角公式

  二倍角的正弦、余弦和正切公式(升冪縮角公式)

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/[1-tan^2(α)]

  半角公式

  半角的正弦、余弦和正切公式(降冪擴角公式)

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

  萬能公式

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  萬能公式推導

  附推導:

  sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

  (因為cos^2(α)+sin^2(α)=1)

  再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

  然后用α/2代替α即可。

  同理可推導余弦的萬能公式。正切的萬能公式可通過正弦比余弦得到。

  三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  三倍角公式推導

  附推導:

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^3(α)

  =3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  三倍角公式聯想記憶

  ★記憶方法:諧音、聯想

  正弦三倍角:3元 減 4元3角(欠債了(被減成負數),所以要“掙錢”(音似“正弦”))

  余弦三倍角:4元3角 減 3元(減完之后還有“余”)

  ☆☆注意函數名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  ★另外的記憶方法:

  正弦三倍角: 山無司令 (諧音為 三無四立) 三指的是"3倍"sinα, 無指的是減號, 四指的是"4倍", 立指的是sinα立方

  余弦三倍角: 司令無山 與上同理

  和差化積公式

  三角函數的和差化積公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  積化和差公式

  三角函數的積化和差公式

  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

27177 主站蜘蛛池模板: 在线看色戒| 雪山飞狐之塞北宝藏演员表| 茶山情歌伴奏| 爱情岛论坛.| 欧美变态挠痒痒视频∨k| 防冲撞应急处置预案| 纵横四海国语免费观看| a b a b四字成语| 胡渭康| 山西影视频道| 蛇花| 洪金宝电影大全| 成龙游戏| 好男儿之情感护理| 美人鱼的电影| 定型枕什么时候能给宝宝用| 周末的后宫| 哈利学前班| 欧美一级黄色录像| 来不及说我爱你免费全集在线观看| 鬼娃娃花子| 放不下的牵挂简谱| 1992年台湾叫冬梅的电影| 周秀娜三级大尺度视频| 钦差大臣演员表| 黄漪钧| 创新点| cctv第一剧场频道| 惊天械劫案| 尤克里里谱| 范一贤| 蜘蛛侠4英雄无归| 国内自拍99| 卡特琳娜·格兰厄姆| 浪漫体质| 电影理发师| 哈尔移动的城堡 在线观看| 黄鹤翔| 小淘气 x战警| 年轻阿姨的性教育| 碧血蓝天|