初二學生如何巧妙運用數學公式解題?
數學公式是人們在研究自然界物與物之間時發現的一些聯系,并通過一定的方式表達出來的一種表達方法。今天學習啦小編將與大家分享:初二學生應當如何巧妙運用數學公式解題?具體內容如下:
有的同學認為,數學公式不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。其實,數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了“乘法九九表”,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9*9時用九個9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運用大家熟記的法則做出來的。
同時,初二數學公式中還有大量的規定需要記憶,因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,初二數學公式一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,有的同學背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對于初二數學公式理解了的要記住,不理解的也要記住,在記憶的基礎上、再應用它們解決問題來加深理解。打一個比方,數學公式就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住初二數學數學公式、就很難解數學題,而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
數學常用基本公式
常見數學幾何公式
長方形的周長=(長+寬)×2 C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬 S=ab
正方形的面積=邊長×邊長 S=a·a=a²
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r
半徑=直徑÷2 r=d÷2
圓的周長=圓周率×直徑=圓周率×半徑×2 =πd=2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2 S=a×h÷2
正方形的面積=邊長×邊長 S=a×a
長方形的面積=長×寬 S=a×b
平行四邊形的面積=底×高 S=a×h
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
內角和:三角形的內角和=180度
長方體的體積=長×寬×高 V=abc
長方體(或正方體)的體積=底面積×高 V=Sh
正方體的體積=棱長×棱長×棱長 V=aaa
圓的周長=直徑×π L=πd=2πr
圓的面積=半徑×半徑×π S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。
S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。
S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。
V=Sh
圓錐的體積=1/3底面積×高。
V=1/3Sh
分數的加、減法則:
同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然后再加減。
分數的乘法則:
用分子的積做分子,用分母的積做分母。
分數的除法則:
除以一個數等于乘以這個數的倒數。
常見單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克=1000克= 1公斤=2市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角 1角=10分 1元=100分
(8)1世紀=100年 1年=365天(平年)、366天(閏年) 1天=24小時 1小時=60分鐘=3600秒 1分鐘=60秒 1秒=1000毫秒
初級數量關系公式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
命題邏輯語義公式
根據謂詞邏輯的語義推導規則,語義應該具有一致性,就是對于一個命題邏輯語句集f,當且僅當至少存在這樣一種解釋i,f的一切元素在i之下都是真的,那么,f是語義一致的 。在命題邏輯語義學內,一個賦值不能同時把真和假給予某個命題原子式。在命題邏輯語義學中,在同一解釋下,一個集合不能既屬于某個謂詞的外延又不屬于該謂詞的外延。