高考數學怎么考好
數學試卷答題時間分配
1、充分利用考前5分鐘
很多學生或家長不知道,按照大型的考試的要求,考前五分鐘是發卷時間,考生填寫準考證。這五分鐘是不準做題的,但是可以看題。發現很多考生拿到試卷之后,就從第一個題開始看,給大家的建議是,拿過這套卷子來,這五分鐘是用來制定整個戰略的關鍵時刻。之前沒看到題目,你只是空想,當你看到題目以后,你得利用這五分鐘迅速制定出整個考試的戰略來。
2、進入考試先審題
考試開始后,很多學生喜歡奮筆疾書;但切記:審題一定要仔細,一定要慢。數學題經常在一個字、一個數據里邊暗藏著解題的關鍵,這個字、這個數據沒讀懂,要么找不著解題的關鍵,要么你誤讀了這個題目。
你在誤讀的基礎上來做的話,你可能感覺做得很輕松,但這個題一分不得。所以審題一定要仔細,你只有把題意弄明白了,這個題目才有可能做對。會做的題目是不耽誤時間的,真正耽誤時間的是在審題的過程中,在找思路的過程中,只要找到思路了,單純地寫那些步驟并不占用時間。
3、節約時間的關鍵是一次做對
有些學生,好不容易遇到一個簡單的題目,就一味地求快,爭取時間去做不會做的題目。殊不知,前面的選擇題和后邊的大題,難易差距是很大的,但是分值的含金量是一樣的,有些學生看不上前邊小題的分數,覺得后邊大題的分數才“值錢”,這是嚴重的誤區。
希望學生在考試的時候,一定要培養一次就做對的習慣,不要指望通過最后的檢查力挽狂瀾。越是重要的考試,往往越沒有時間回來檢查,因為題目越往后越難,可能你陷在里面出不來,抬起頭來的時候已經開始收卷了。
高考數學復習技巧
1、訓練想像力。有的數學問題既要憑借圖形,又要進行抽象思維。同學們不但要學會看圖,而且要學會畫圖,通過看圖和畫培養自己的空間想象能力比如,幾何中的“點”沒有大小,只有位置。現實生活中的點和實際畫出來的點就有大小。所以說,幾何中的“點”只存在于大腦思維中。
2、準確理解和牢固掌握各種數學運算所需的概念、性質、公式、法則和一些常用數據,概念模糊,公式、法則含混,必定影響數學運算的準確性。為了提高運算的速度,收集、歸納、積累經驗,形成熟練技巧,以提高運算的簡捷性和迅速性。
3、審題。有些題目的部分條件并不明確給出,而是隱含在文字敘述之中。把隱含條件挖掘出米,常常是數學解題的關鍵所在,對題目隱含條件的挖掘,都要仔細思考除了明確給出的條件以外,是否還隱含著更多的條件,這樣才能準確地理解數學題意。
高考數學必考知識點歸納
必修一:
1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質及應用(比較抽象,較難理解)
必修二:
1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。
這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考占22---27分
2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題
3、圓方程
必修三:
1、算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科占到15分,文科數學占到5分。
必修四:
1、三角函數:(圖像、性質、高中重難點,)必考大題:15---20分,并且經常和其他函數混合起來考查。
2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線結合命題。09年理科占到5分,文科占到13分。
必修五:
1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數學占到13分左右2、數列:高考必考,17---22分3、不等式:(線性規劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。
文科選修:
選修1--1:重點:高考占30分
1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導數、導數的應用(高考必考)
選修1--2:
1、統計:2、推理證明:一般不考,若考會是填空題3、復數:(新課標比老課本難的多,高考必考內容)。
理科選修:
選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)選修2--2:1、導數與微積分2、推理證明:一般不考3、復數
選修2--3:1、計數原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統計:
高考的知識板塊
集合與簡單邏輯:5分或不考
函數:高考60分:①、指數函數②對數函數③二次函數④三次函數⑤三角函數⑥抽象函數(無函數表達式,不易理解,難點)
平面向量與解三角形
立體幾何:22分左右
不等式:(線性規則)5分必考
數列:17分(一道大題+一道選擇或填空)易和函數結合命題
平面解析幾何:(30分左右)
計算原理:10分左右
概率統計:12分----17分
復數:5分
高考數學考前必背知識點
一、三角函數題
三角題一般在解答題的前兩道題的位置上,主要考查三角恒等變換、三角函數的圖像與性質、解三角形等有關內容.三角函數、平面向量和三角形中的正、余弦定理相互交匯,是高考中考查的熱點.
二、數列題
數列題重點考查等差數列、等比數列、遞推數列的綜合應用,常與不等式、函數、導數等知識綜合交匯,既考查分類、轉化、化歸、歸納、遞推等數學思想方法,又考查綜合運用知識進行運算、推理論證及解決問題的能力.近幾年這類試題的位置有所前移,難度明顯降低.
三、立體幾何題
常以柱體、錐體、組合體為載體全方位地考查立體幾何中的重要內容,如線線、線面與面面的位置關系,線面角、二面角問題,距離問題等,既有計算又有證明,一題多問,遞進排列,此類試題既可用傳統方法解答,又可用空間向量法處理,有的題是兩法兼用,可謂珠聯璧合,相得益彰.究竟選用哪種方法,要由自己的長處和圖形特點來確定.便于建立空間直角坐標系的,往往選用向量法,反之,選用傳統方法.另外,“動態”探索性問題是近幾年高考立體幾何命題的新亮點,三視圖的巧妙參與也是立體幾何命題的新手法,要注意把握.
四、概率問題
概率題一般在解答題的前三道題的位置上,主要考查數據處理能力、應用意識、必然與或然思想,因此近幾年概率題常以概率與統計的交匯形式呈現,并用實際生活中的背景來“包裝”.概率重點考查離散型隨機變量的分布列與期望、互斥事件有一個發生的概率、相互獨立事件同時發生的概率、獨立重復試驗與二項分布等;統計重點考查抽樣方法(特別是分層抽樣)、樣本的頻率分布、樣本的特征數、莖葉圖、線性回歸、列聯表等,穿插考查合情推理能力和優化決策能力.同時,關注幾何概型與定積分的交匯考查,此類試題在近幾年的高考中難度有所提升,考生應有心理準備.
五、圓錐曲線問題
解析幾何題一般在解答題的后三道題的位置上,有時是“把關題”或“壓軸題”,說明了解析幾何題依然是重頭戲,在新課標高考中依然占有較突出的地位.考查重點:第一,解析幾何自身模塊的小交匯,是指以圓、圓錐曲線為載體呈現的,將兩種或兩種以上的知識結合起來綜合考查.如不同曲線(含直線)之間的結合,直線是各類曲線和相關試題最常用的“調味品”,顯示了直線與方程的各知識點的基礎性和應用性.第二,圓錐曲線與不同模塊知識的大交匯,以解析幾何與函數、向量、代數知識的結合最為常見.有關解析幾何的最值、定值、定點問題應給予重視.一般來說,解析幾何題計算量大且有一定的技巧性(要求品出“幾何味”來),需要“精打細算”,對考生的意志品質和數學機智都是一種考驗和檢測.
六、導數、極值、最值、不等式恒成立(或逆用求參)問題
導數題考查的重點是用導數研究函數性質或解決與函數有關的問題.往往將函數、不等式、方程、導數等有機地綜合,構成一道超大型綜合題,體現了在“知識網絡交匯點處設計試題”的高考命題指導思想.鑒于該類試題的難度大,有些題還有高等數學的背景和競賽題的味道,標準答案提供的解法往往如同“神來之筆”,確實想不到,加之“搏殺”到此時的考生的精力和考試時間基本耗盡,建議考生一定要當機立斷,視時間和自身實力,先看第(1)問可否拿下,再確定放棄、分段得分或強攻.近幾年該類試題與解析幾何題輪流“坐莊”,經常充當“把關題”或“壓軸題”的重要角色.