亚洲伊人网站-亚洲伊人精品-亚洲伊人电影-亚洲一在线-久久国产一区二区-久久国产一区

高分網 > 高中學習方法 > 高二學習方法 > 高二數學 >

高二數學知識點歸納

時間: 澤璇 高二數學

一、集合概念

(1)集合中元素的特征:確定性,互異性,無序性。

(2)集合與元素的關系用符號=表示。

(3)常用數集的符號表示:自然數集;正整數集;整數集;有理數集、實數集。

(4)集合的表示法:列舉法,描述法,韋恩圖。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

函數

一、映射與函數:

(1)映射的概念:(2)一一映射:(3)函數的概念:

二、函數的三要素:

相同函數的判斷方法:①對應法則;②定義域(兩點必須同時具備)

(1)函數解析式的求法:

①定義法(拼湊):②換元法:③待定系數法:④賦值法:

(2)函數定義域的求法:

①含參問題的定義域要分類討論;

②對于實際問題,在求出函數解析式后;必須求出其定義域,此時的定義域要根據實際意義來確定。

(3)函數值域的求法:

①配方法:轉化為二次函數,利用二次函數的特征來求值;常轉化為型如:的形式;

②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;

④換元法:通過變量代換轉化為能求值域的函數,化歸思想;

⑤三角有界法:轉化為只含正弦、余弦的函數,運用三角函數有界性來求值域;

⑥基本不等式法:轉化成型如:,利用平均值不等式公式來求值域;

⑦單調性法:函數為單調函數,可根據函數的單調性求值域。

⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。

三、函數的性質:

函數的單調性、奇偶性、周期性

單調性:定義:注意定義是相對與某個具體的區間而言。

判定方法有:定義法(作差比較和作商比較)

導數法(適用于多項式函數)

復合函數法和圖像法。

應用:比較大小,證明不等式,解不等式。

奇偶性:定義:注意區間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;

f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。

判別方法:定義法,圖像法,復合函數法

應用:把函數值進行轉化求解。

周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。

其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.

應用:求函數值和某個區間上的函數解析式。

四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。

常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)

平移變換y=f(x)→y=f(x+a),y=f(x)+b

注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過平移得到函數y=f(2x+4)的圖象。

(ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。

對稱變換y=f(x)→y=f(-x),關于y軸對稱

y=f(x)→y=-f(x),關于x軸對稱

y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱

y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數)

伸縮變換:y=f(x)→y=f(ωx),

y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。

一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關于直線x=a對稱;

五、反函數:

(1)定義:

(2)函數存在反函數的條件:

(3)互為反函數的定義域與值域的關系:

(4)求反函數的步驟:①將看成關于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數的定義域(即的值域)。

(5)互為反函數的圖象間的關系:

(6)原函數與反函數具有相同的單調性;

(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。

七、常用的初等函數:

(1)一元一次函數:

(2)一元二次函數:

一般式

兩點式

頂點式

二次函數求最值問題:首先要采用配方法,化為一般式,

有三個類型題型:

(1)頂點固定,區間也固定。如:

(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。

(3)頂點固定,區間變動,這時要討論區間中的參數.

等價命題在區間上有兩根在區間上有兩根在區間或上有一根

注意:若在閉區間討論方程有實數解的情況,可先利用在開區間上實根分布的情況,得出結果,在令和檢查端點的情況。

(3)反比例函數:

(4)指數函數:

指數函數:y=(a>o,a≠1),圖象恒過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0

(5)對數函數:

對數函數:y=(a>o,a≠1)圖象恒過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0

注意:

(1)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函數,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。

高二上學期數學知識點歸納

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件.

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.

四、三角函數(46課時17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、余弦的誘導公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

五、平面向量(12課時,8個)

1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數方程.

八、圓錐曲線(18課時,7個)

1.橢圓及其標準方程;2.橢圓的'簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質.

九、(B)直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理.2.排列;3.排列數公式’4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗.選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸.

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的最大值和最小值.

十五、復數(4課時,4個)

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法。

如何提高高二成績

好的心態是成功的一半,有了這一點,就只差策略、方法以及努力了。高二的確是個很重要的階段,承上啟下。抓住這次期末考試,對高中以來的知識進行總結,將知識系統化,在此基礎上提升自己的基礎,可以很好地為高三的學習打好基礎,這在起跑線上就超出別人一截。所以,這次期末考試的意義超出了它本身,你可以將它當做一個提升的契機。

對于文科成績不重視的情況,這是要不得的。因為文科成績在將來的高考中也要占相當一部分比重,而且語文、英語這些學科學習起來的意義并不僅僅是一時的。相信你們班的那些成績拔尖的學生,文科成績也不會差。所以你要將文科重視起來,改變文科成績忽高忽低的情況,這樣會對你的總成績的提高有很大幫助。

高二下學期數學學習方法

1.課前預習教材。課前可以把教材上第二天老師要講的內容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。

2.上課專心聽講。這是很重要的,很多同學以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。

3.課后認真復習。剛學的知識,還沒完全被消化吸收成為自己的知識,如果不及時復習,就很容易忘記。所以,課后一定要抽出一些時間,及時對所學進行鞏固。

4.公式定理牢記。高中數學很多題目就是各種公式定理的理解與應用,不牢記就別談做題。

5.通過習題鞏固。數學是理科,需要通過一定量的習題來鞏固,量變積累到了一定量才能質變嘛。這個并非要各位打題海戰術,只要求各位做到熟練為止。

6.錯題反復研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復研究,避免再次出錯。

高二數學學習技巧

一、抓好基礎

數學習題無非就是數學概念和數學思想的組合應用,弄清數學基本概念、基本定理、基本方法是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據。只有概念清楚,方法全面,遇到題目時,就能很快的得到解題方法,或者面對一個新的習題,就能聯想到我們平時做過的習題的方法,達到迅速解答。弄清基本定理是正確、快速解答習題的前提條件,特別是在立體幾何等章節的復習中,對基本定理熟悉和靈活掌握能使習題解答條理清楚、邏輯推理嚴密。反之,會使解題速度慢,邏輯混亂、敘述不清。

二、制定好計劃和奮斗目標

復習數學時,要制定好計劃,不但要有本學期大的規劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,如按照老師的復習進度,今天復習到什么知識點,就應該在今天之內掌握該知識點,加深對該知識點的理解,研究該知識點考查的不同側面、不同角度。

在每天的復習計劃里,要留有一定的時間看課本,看筆記,回顧過去知識點,思考老師當天講了什么知識,歸納當天所學的知識。可以說,每天的習題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計劃時注意。

三、嚴防題海戰術,克服盲目做題而不注重歸納的現象

做習題是為了鞏固知識、提高應變能力、思維能力、計算能力。學數學要做一定量的習題,但學數學并不等于做題,在各種考試題中,有相當的習題是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習題是要通過做一定量的習題達到對解題方法的展移而實現的,但,隨著高考的改革,高考已把考查的重點放在創造型、能力型的考查上。

因此要精做習題,注意知識的理解和靈活應用,當你做完一道習題后不訪自問:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習題中有什么解題的通性?實現問題的完全解決我應用了怎樣的解題策略?只有這樣才會培養自己的悟性與創造性,開發其創造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強的題目時可以有一個科學的方法解決它。

81033 主站蜘蛛池模板: 李莉莉| 疯狗强尼电影完整版在线观看| 欲望之城 电影| 国产老阿姨| 开国前夜 电视剧| 闪电11人| 永远是少年电影免费观看| 海豹w| 张志忠主演电视剧| 杨英格| winnie| 天安城门怎样画帅气| 好男人电视剧| 外貌协会face日本动漫| 漂亮孕妇突然肚子疼视频 | 小娥| 那年秋天| 32步简单舞步完整版| 卜算子咏梅拼音| 电影 本能| 伸舌头接吻脱裤子| 情哥哥| 《她的城》电视剧| 高档货| 八哥图库图谜| 花飞满城春 电影| 五年级第八单元作文| 天台电影| 火花 电影| 《求知报》答案| 自制化妆豆豆本| 牙齿扩弓的最佳年龄| 邓家佳电影| 浙江卫视在线观看tv| 破冰 电影| 日韩电影免费观| 鬼父在线| 欲情电影在线看| 挠丝袜| 麻豆视频网站免费观看| 吉吉映画|