小升初奧數題以及答案
奧數題
1.
學校購買840本圖書分給高、中、低三個年級段,高年級段分的是低年級段的2倍,中年級段分的是低年級段的3倍少120本。三個年級段各分得多少本圖書?
2.
學校田徑組原來女生人數占1/3,后來又有6名女生參加進來,這樣女生就占田徑組總人數的4/9?,F在田徑組有女生多少人?
3.
小華有連環畫本數是小明6倍如果兩人各再買2本那么小華所有本數是小明4倍兩人原來各有連環畫多少本?
4.
小春一家四口人今年的年齡之和為147歲,爺爺比爸爸大38歲,媽媽比小春大27歲,爺爺的年齡是小春與媽媽年齡之和的2倍。小春一家四口人的年齡各是多少?
答案
1.答案:
設低年級段分得x本書,則高年級段分得2x本,中年級段分得(3x-120)本
x+2x+3x-120=840
6x-120=840
6x=840+120
6x=960
x=960/6
x=160
高年級段為:160__2=320( 本) 中年級段為:160__3-120=360(本)
答:低年級段分得圖書160本,中年級段分得圖書360本,高年級段分得圖書320本.
2.答案:
解 設 原來田徑隊男女生一共x人
1/3x+6= 4/9(x+6)
x=30
1/3x+6=30__1/3+6=16
女生16人
3.答案:
解:設小華的有x本書
4(x+2)=6x+2
4x+8=6x+2
x=3
6x=18
4.答案:
1
設小春x歲,則媽媽x+27歲,爺爺(x+x+27)__2=4x+54歲,爸爸4x+54-38=4x+16歲
x+x+27+4x+54+4x+16=147,x=5
所以小春5歲,媽媽32歲,爺爺74歲,爸爸36歲。
2
爺爺+爸爸+(媽媽+小春)
=爺爺+(爺爺-38)+(爺爺/2)=147
爺爺=74歲
爸爸=36歲
媽媽+小春=小春+27+小春=74/2=37
小春=5歲
媽媽=5+27=32歲
小春一家四口人的年齡各是74,36,32,5歲
3
(147+38)÷(2×2+1)=37(歲)
36×2=74(歲) 爺爺的年齡
74-38=36(歲) 爸爸的年齡
(37+27)÷2=32(歲) 媽媽的年齡
32-27=5(歲) 小華的年齡
小升初數學解題的方法
一、對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
例1:三個連續自然數的和是18,則這三個自然數從小到大分別是多少?
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。
二、公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,并能準確運用。
例2:計算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運用乘法分配律
=59×50…………運用加法計算法則
=(60-1)×50…………運用數的組成規則
=60×50-1×50…………運用乘法分配律
=3000-50…………運用乘法計算法則
=2950…………運用減法計算法則
三、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法
例3:填空:0.75的最高位是( ),這個數小數部分的最高位是( );十分位的數4與十位上的數4相比,它們的( )相同,( )不同,前者比后者小了( )。
這道題的意圖就是要對“一個數的最高位和小數部分的最高位的區別”,還有“數位和數值”的區別等。
四、分類法
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。
例4:自然數按約數的個數來分,可分成幾類?
答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個。
五、分析法
把整體分解為部分,把復雜的事物分解為各個部分或要素,并對這些部分或要素進行研究、推導的`一種思維方法叫做分析法。
例5:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件?
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴, 還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。
六、綜合法
把對象的各個部分或各個方面或各個要素聯結起來,并組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。
例6:兩個質數,它們的差是小于30的合數,它們的和即是11的倍數又是小于50的偶數。寫出適合上面條件的各組數。
思路:11的倍數同時小于50的偶數有22和44。
兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2。
和是22的兩個質數有:3和19,5和17。它們的差都是小于30的合數嗎?
和是44的兩個質數有:3和41,7和37,13和31。它們的差是小于30的合數嗎?
這就是綜合法的思路。
七、方程法
用字母表示未知數,并根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。方程法最大的特點是把未知 數等同于已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利于由已知向未知的轉化,從而提高了解題的效率和正確率。
例7:一個數擴大3倍后再增加100,然后縮小2倍后再減去36,得50。求這個數。
八、參數法
用只參與列式、運算而不需要解出的字母或數表示有關數量,并根據題意列出算式的一種方法叫做參數法。參數又叫輔助未知數,也稱中間變量。參數法是方程法延伸、拓展的產物。
例8:汽車爬山,上山時平均每小時行15千米,下山時平均每小時行駛10千米,問汽車的平均速度是每小時多少千米?
上下山的平均速度不能用上下山的速度和除以2。而應該用上下山的路程÷2。
九、排除法
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩余的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例9:為什么說除2外,所有質數都是奇數?
這就要用反證法:比2大的所有自然數不是質數就是合數。假設:比2大的質數有偶數,那么,這個偶數一定能被2整除,也就是說它一定有約數2。一個數的約 數除了1和它本身外,還有別的約數(約數2),這個數一定是合數而不是質數。這和原來假定是質數對立(矛盾)。所以,原來假設錯誤。
十、特例法
對于涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在于特殊性之中。
例10:大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的()倍,大圓面積是小圓面積的()倍。
可以取小圓半徑為1,那么大圓半徑就是2。計算一下,就能得出正確結果。
小升初數學考試中的技巧
一、提前進入“角色”
考前一個晚上睡足八個小時,早晨吃好清淡早餐,按清單帶齊一切用具,提前半小時到達考區,一方面可以消除新異刺激,穩定情緒,從容進場,另一方面也留有時間提前進入“角色”——讓大腦開始簡單的數學活動,進入單一的數學情境。
如:
1.清點一下用具是否帶全(筆、橡皮、作圖工具、身分證、準考證等)。
2.把一些基本數據、常用公式、重要定理“過過電影”。
3.最后看一眼難記易忘的結論。
4.互問互答一些不太復雜的問題。
一些經驗表明,“過電影”的成功順利,互問互答的愉快輕松,不僅能夠轉移考前的恐懼,而且有利于把最佳競技狀態帶進考場。
二、精神要放松,情緒要自控
最易導致心理緊張、焦慮和恐懼的是入場后與答卷前的“臨戰”階段,此間保持心態平衡的方法有三種:
①轉移注意法:避開臨考者的目光,把注意力轉移到某一次你印象較深的數學模擬考試的評講課上,或轉移到對往日有趣、滑稽事情的回憶中。
②自我安慰法:如“我經過的.考試多了,沒什么了不起”,“考試,老師監督下的獨立作業,無非是換一換環境”等。
③抑制思維法:閉目而坐,氣貫丹田,四肢放松,深呼吸,慢吐氣,如此進行到發卷時。
三、迅速摸透“題情”
剛拿到試卷,一般心情比較緊張,不忙匆匆作答,可先從頭到尾、正面反面通覽全卷,盡量從卷面上獲取最多的信息,為實施正確的解題策略作全面調查,一般可在十分鐘之內做完三件事。
1.順利解答那些一眼看得出結論的簡單選擇或填空題(一旦解出,情緒立即穩定)。
2.對不能立即作答的題目,可一面通覽,一面粗略分為A、B兩類:A類指題型比較熟悉、估計上手比較容易的題目,B類是題型比較陌生、自我感覺比較困難的題目。
3.做到三個心中有數:對全卷一共有幾道大小題有數,防止漏做題,對每道題各占幾分心中有數,大致區分一下哪些屬于代數題,哪些屬于三角題,哪些屬于綜合型的題。
通覽全卷是克服“前面難題做不出,后面易題沒時間做”的有效措施,也從根本上防止了“漏做題”。
四、信心要充足,暗示靠自己
答卷中,見到簡單題,要細心,莫忘乎所以,謹防“大意失荊州”。面對偏難的題,要耐心,不能急。考試全程都要確定“人家會的我也會,人家不會的我也會”的必勝信念,使自己始終處于最佳競技狀態。
五、三先三后
在通覽全卷、并作了簡單題的第一遍解答后,情緒基本趨于穩定,大腦趨于亢奮,此后七八十分鐘內就是最佳狀態的發揮或收獲豐碩果實的黃金季節了。實踐證明,滿分卷是極少數,絕大部分考生都只能拿下部分題目或題目的部分得分。因此,實施“三先三后”及“分段得分”的考試藝術是明智的。
1.先易后難。就是說,先做簡單題,再做復雜題;先做A類題,再做B類題。當進行第二遍解答時(通覽并順手解答算第一遍),就無需拘泥于從前到后的順序,應根據自己的實際,跳過啃不動的題目,從易到難。
2.先高(分)后低(分)。這里主要是指在考試的后半段時要特別注重時間效益,如兩道題都會做,先做高分題,后做低分題,以使時間不足時少失分;到了最后十分鐘,也應對那些拿不下來的題目就高分題“分段得分”,以增加在時間不足前提下的得分。
3.先同后異。就是說,可考慮先做同學科同類型的題目。這樣思考比較集中,知識或方法的溝通比較容易,有利于提高單位時間的效益。一般說來,考試解題必須進行“興奮灶”的轉移,思考必須進行代數學科與幾何學科的相互換位,必須進行從這一章節到那一章節的跳躍,但“先同后異”可以避免“興奮灶”過急、過頻和過陡的跳躍。
三先三后,要結合實際,要因人而異,謹防“高分題久攻不下,低分題無暇顧及”。