初中數學五大有效學習方法
二是細讀。對重要的概念、性質、判定、公式、法則、思想方法等反復閱讀、體會、思考,領會其實質及其因果關系,并在不理解的地方作上記號(以便求教);
三是研讀。要研究知識間的內在聯系,研討書本知識安排意圖,并對知識進行分析、歸納、總結,以形成知識體系,完善認知結構。
讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。
2.聽的方法。“聽”是直接用感官去接受知識,而初一同學往往對課程增多、課堂學習量加大不適應,顧此失彼,精力分散,使聽課效果下降。因此應在聽課的過程中注意做到:
(1)聽每節課的學習要求;
(2)聽知識的引入和形成過程;
(3)聽懂教學中的重、難點(尤其是預習中不理解的或有疑問的知識點);
(4)聽例題關鍵部分的提示及應用的數學思想方法;
(5)聽好課后小結。
3.思考的方法。“思”指同學的思維。數學是思維的體操,學習離不開思維,數學更離不開思維活動,善于思考則學得活,效率高;不善于思考則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。七年級學生的思維往往還停留在小學的思維中,思維狹窄。因此在學習中要做到:
(1)敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習時要多思考;
(2)善于思考。會抓住問題的關鍵、知識的重點進行思考;
(3)反思。要善于從回顧解題策略、方法的優劣進行分析、歸納、總結。
4.問的方法。孔子曰:“敏而好學,不恥不問。”愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學科的學習無不是從問題開始的。但七年級同學往往不善于問,不懂得如何問。因此,同學在平時學習中應掌握問問題的一些方法,主要有:
(1)追問法。即在某個問題得到回答后,順其思路對問題緊追不舍,刨根到底繼續發問;
(2)反問法。根據教材和教師所講的內容,從相反的方向把問題提出來;
(3)類比提問法。據某些相似的概念、定理、性質等的相互關系,通過比較和類推提出問題;
(4)聯系實際提問法。結合某些知識點,通過對實際生活中一些現象的觀察和分析提出問題。
此外,在提問時不僅要問其然,還要問其所以然。
5.記筆記的方法。
很大一部分學生認為數學沒有筆記可記,有記筆記的學生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。
有的筆記雖然記得很全,但收效甚微。因此,學生作筆記時應做到以下幾點:
(1)在“聽”,“思”中有選擇地記錄;
(2)記學習內容的要點,記自己有疑問的疑點,記書中沒有的知識及教師補充的知識點;
(3)記解題思路、思想方法;
(4)記課堂小結。并使學生明確筆記是為補充“聽”“思”的不足,是為最后復習準備的,好的筆記能使復習達到事倍功半的效果。
初中數學二次函數考試知識點
考點1:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
考核要求:
(1)通過實例認識變量、自變量、因變量,知道函數以及函數的定義域、函數值等概念;
(2)知道常值函數;
(3)知道函數的表示方法,知道符號的意義。
考點2:用待定系數法求二次函數的解析式
考核要求:
(1)掌握求函數解析式的方法;
(2)在求函數解析式中熟練運用待定系數法。
考點3:畫二次函數的圖像
考核要求:
(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像
(2)理解二次函數的圖像,體會數形結合思想;
(3)會畫二次函數的大致圖像。
考點4:二次函數的圖像及其基本性質
考核要求:
(1)借助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;
(2)會用配方法求二次函數的頂點坐標,并說出二次函數的有關性質。
注意:
(1)解題時要數形結合;
(2)二次函數的平移要化成頂點式。
初中數學二元一次方程知識點
1.二元一次方程:含有兩個未知數,并且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.
2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵.
※5.一次方程組的應用:
(1)對于一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對于方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對于方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.
初中數學重點知識點
多項式除以單項式
一、單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字“1”。
12、單項式的次數僅與字母有關,與單項式的系數無關。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
三、整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今后將要學習的分式。
四、整式的加減
1、整式加減的理論根據是:去括號法則,合并同類項法則,以及乘法分配率。
2、幾個整式相加減,關鍵是正確地運用去括號法則,然后準確合并同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對于某些特殊的代數式,可采用“整體代入”進行計算。
五、同底數冪的乘法
1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。
2、底數相同的冪叫做同底數冪。
3、同底數冪乘法的運算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n=am﹒an。
5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。
3、此法則也可以逆用,即:amn=(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數是乘積形式的乘方。
2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
八、三種“冪的運算法則”異同點
1、共同點:
(1)法則中的底數不變,只對指數做運算。
(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。
(3)對于含有3個或3個以上的運算,法則仍然成立。
2、不同點:
(1)同底數冪相乘是指數相加。
(2)冪的乘方是指數相乘。
(3)積的乘方是每個因式分別乘方,再將結果相乘。
九、同底數冪的除法
1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。
2、此法則也可以逆用,即:am-n=am÷an(a≠0)。
十、零指數冪
1、零指數冪的意義:任何不等于0的數的0次冪都等于1,即:a0=1(a≠0)。
十一、負指數冪
1、任何不等于零的數的―p次冪,等于這個數的p次冪的倒數,即:
注:在同底數冪的除法、零指數冪、負指數冪中底數不為0。
十二、整式的乘法
(一)單項式與單項式相乘
1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其余字母連同它的指數不變,作為積的因式。
2、系數相乘時,注意符號。
3、相同字母的冪相乘時,底數不變,指數相加。
4、對于只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。
5、單項式乘以單項式的結果仍是單項式。
6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。
(二)單項式與多項式相乘
1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。
2、運算時注意積的符號,多項式的每一項都包括它前面的符號。
3、積是一個多項式,其項數與多項式的項數相同。
4、混合運算中,注意運算順序,結果有同類項時要合并同類項,從而得到最簡結果。
(三)多項式與多項式相乘
1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數等于兩個多項式項數的積。
3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用“同號得正,異號得負”。
4、運算結果中有同類項的要合并同類項。
5、對于含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。
初中數學知識點歸納
正數和負數
⒈正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。
2.具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:-8℃
3.0表示的意義
⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
⑵0是正數和負數的分界線,0既不是正數,也不是負數。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
有理數
1.有理數的概念
⑴正整數、0、負整數統稱為整數(0和正整數統稱為自然數)
⑵正分數和負分數統稱為分數
⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。3,整數也能化成分數,也是有理數
注意:引入負數以后,奇數和偶數的范圍也擴大了,像-2,-4,-6,-8?也是偶數,-1,-3,-5?也是奇數。
2.有理數的分類
⑴按有理數的意義分類⑵按正、負來分正整數
整數0正有理數正分數
有理數有理數0(0不能忽視)
負整數
分數負有理數負分數
總結:①正整數、0統稱為非負整數(也叫自然數)
②負整數、0統稱為非正整數
③正有理數、0統稱為非負有理數
④負有理數、0統稱為非正有理數