八年級(jí)數(shù)學(xué)勾股定理教案范文3篇
《勾股定理》是人教版新課標(biāo)初中八年級(jí)下冊(cè)數(shù)學(xué)第十八單元第一節(jié)的內(nèi)容,以下是學(xué)習(xí)啦小編要與大家分享的:八年級(jí)數(shù)學(xué)勾股定理教案范文,供大家參考!
八年級(jí)數(shù)學(xué)勾股定理教案范文一
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握;
(2)學(xué)會(huì)利用進(jìn)行計(jì)算、證明與作圖;
(3)了解有關(guān)的歷史.
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運(yùn)算能力
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過有關(guān)的歷史講解,對(duì)學(xué)生進(jìn)行德育教育.
教學(xué)重點(diǎn):及其應(yīng)用
教學(xué)難點(diǎn):通過有關(guān)的歷史講解,對(duì)學(xué)生進(jìn)行德育教育
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識(shí)復(fù)習(xí)
(1)三角形的三邊關(guān)系
(2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學(xué)生用文字語言將上述問題表述出來.
:直角三角形兩直角邊 的平方和等于斜邊 的平方
強(qiáng)調(diào)說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)
學(xué)習(xí)完一個(gè)重要知識(shí)點(diǎn),給學(xué)生留有一定的時(shí)間和機(jī)會(huì),提出問題,然后大家共同分析討論.
3、定理的證明方法
方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形.
方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形,
方法三:“總統(tǒng)”法.如圖所示將兩個(gè)直角三角形拼成直角梯形
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo).最后總結(jié)說明
4、定理與逆定理的應(yīng)用
例1 已知:如圖,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的長.
解:∵△ABC是直角三角形,AB=5,BC=3,由有
∴ ∠2=∠C
又
∴
∴CD的長是2.4cm
例2 如圖,△ABC中,AB=AC,∠BAC= ,D是BC上任一點(diǎn),
求證:
證法一:過點(diǎn)A作AE⊥BC于E
則在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
證法二:過點(diǎn)D作DE⊥AB于E, DF⊥AC于F
則DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,F(xiàn)D=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 設(shè)
求證:
證明:構(gòu)造一個(gè)邊長 的矩形ABCD,如圖
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 國家電力總公司為了改善農(nóng)村用電電費(fèi)過高的現(xiàn)狀,目前正在全國各地農(nóng)村進(jìn)行電網(wǎng)改造,某村六組有四個(gè)村莊A、B、C、D正好位于一個(gè)正方形的四個(gè)頂點(diǎn),現(xiàn)計(jì)劃在四個(gè)村莊聯(lián)合架設(shè)一條線路,他們?cè)O(shè)計(jì)了四種架設(shè)方案,如圖實(shí)線部分.請(qǐng)你幫助計(jì)算一下,哪種架設(shè)方案最省電線.
解:不妨設(shè)正方形的邊長為1,則圖1、圖2中的總線路長分別為
AD+AB+BC=3,AB+BC+CD=3
圖3中,在Rt△DGF中
同理
∴圖3中的路線長為
圖4中,延長EF交BC于H,則FH⊥BC,BH=CH
由∠FBH= 及得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此圖中總線路的長為4EA+EF=
∵3>2.828>2.732
∴圖4的連接線路最短,即圖4的架設(shè)方案最省電線.
5、課堂小結(jié):
(1)的內(nèi)容
(2)的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè) :
a、書面作業(yè) P130#1、2、3
b、上交作業(yè) P132#1、3
板書設(shè)計(jì)
八年級(jí)數(shù)學(xué)勾股定理教案范文二
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握勾股定理;
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史.
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運(yùn)算能力
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育.
教學(xué)重點(diǎn):勾股定理及其應(yīng)用
教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識(shí)復(fù)習(xí)
(1)三角形的三邊關(guān)系
(2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學(xué)生用文字語言將上述問題表述出來.
八年級(jí)數(shù)學(xué)勾股定理教案范文三
一.知識(shí)歸納
1.勾股定理
內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;
表示方法:如果直角三角形的兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2
勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達(dá)哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進(jìn)一步發(fā)現(xiàn)并證明了直角三角形的三邊關(guān)系為:兩直角邊的平方和等于斜邊的平方
2.勾股定理的證明
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是
①圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變
②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理
3.勾股定理的適用范圍
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應(yīng)用勾股定理時(shí),必須明了所考察的對(duì)象是直角三角形 4.勾股定理的應(yīng)用
①已知直角三角形的任意兩邊長,求第三邊
②知道直角三角形一邊,可得另外兩邊之間的數(shù)量關(guān)系
③可運(yùn)用勾股定理解決一些實(shí)際問題