初二數學考前復習方法總結
對于初二的學生來說,都在學習新課,課本是大家都容易忽視的一個重要的復習資料。平時在學校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學們在翻看筆記的同時,對照課本,把學過的知識點反復閱讀、理解,并對照課后練習里的習題進行反復思考、琢磨、融會貫通,加深對知識點的理解。對于課本上的重點內容、重點例題也要著重記憶。
2、錯題本
相信學習習慣好的學生都應該有一本錯題本,把每次習題、作業、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發現自己知識和能力上的薄弱點,經常拿出來翻看,遇到反復做錯的題目,要主動和同學商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。
初二數學提分方法
1、“方程”的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度__時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。
物理中的能量守恒,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的“方程”思想就是對于數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、“數形結合”的思想
大千世界,“數”與“形”無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究“數”的,幾何是研究“形”的。但是,研究代數要借助“形”,研究幾何要借助“數”,“數形結合”是一種趨勢,越學下去,“數”與“形”越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做“解析幾何”。
3、“對應”的思想
“對應”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數“1”,將兩只眼睛、一對耳環、雙胞胎對應一個抽象的數“2”;隨著學習的深入,我們還將“對應”擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。
初二數學有關圓的知識點
考點1:圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷。
考點2:圓心角、弧、弦、弦心距之間的關系
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點3:垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點4:直線與圓、圓與圓的位置關系及其相應的數量關系
直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。
初二數學有關多邊形的知識點
1、多邊形:由一些線段首尾順次連結組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點:多邊形每相鄰兩邊的公共端點叫做多邊形的頂點。
4、多邊形的對角線:連結多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線。
5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。
6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。
說明:一個多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內角,簡稱多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。
注意:多邊形的外角也就是與它有公共頂點的內角的鄰補角。
9、多邊形內角和定理:n邊形內角和等于(n-2)180°。
10、多邊形內角和定理的推論:n邊形的外角和等于360°。
說明:多邊形的外角和是一個常數(與邊數無關),利用它解決有關計算題比利用多邊形內角和公式及對角線求法公式簡單。無論用哪個公式解決有關計算,都要與解方程聯系起來,掌握計算方法。
初二數學知識點總結
(一)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等于
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
①列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等于一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(二)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減.