數學初二復習方法總結
勤動手:做題不要看,一定要算,不會的知識點寫下來,記在筆記本上。
勤動口:不會的有疑問的一定要問老師,時間不等人,在沒有時間可以浪費。而且學會與同學討論問題。
勤動耳:老師講的復習課一定要聽,不要認為這道題會,老師講就可以溜號,須知溫故可知新。
勤動腦:善于思考問題,積極思考問題——吸收、儲存信息
勤動腿:不要參加過于激烈的運動,防止受傷影響學習,但要運動,每天慢跑30分鐘即可,報至狀態。
數學初二讀書方法
一是粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節知識的概貌,重、難點;
二是細讀。對重要的概念、性質、判定、公式、法則、思想方法等反復閱讀、體會、思考,領會其實質及其因果關系,并在不理解的地方作上記號(以便求教);
三是研讀。要研究知識間的內在聯系,研討書本知識安排意圖,并對知識進行分析、歸納、總結,以形成知識體系,完善認知結構。
讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。
數學初二分式知識點
一、分式
※1.兩個整數不能整除時,出現了分數;類似地,當兩個整式不能整除時,就出現了分式;
整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么稱為分式,對于任意一個分式,分母都不能為零.
※2.進行分數的化簡與運算時,常要進行約分和通分,其主要依據是分數的基本性質:
分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變;
※3.一個分式的分子、分母有公因式時,可以運用分式的基本性質,把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分;
※4.分子與分母沒有公因式的分式,叫做最簡分式;
二、分式的乘除法法則
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘(簡記為:除以一個數等于乘以這個數的倒數)
三、分式的加減法
※1.分式與分數類似,也可以通分;
根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;
※2.分式的加減法:
分式的加減法與分數的加減法一樣,分為同分母的分式相加減與異分母的分式相加減;
(1)同分母的分式相加減,分母不變,把分子相加減;
(2)異號分母的分式相加減,先通分,變為同分母的分式,然后再加減;
※3.概念內涵:
通分的關鍵是確定最簡分母,其方法如下:
(1)最簡公分母的系數,取各分母系數的最小公倍數;
(2)最簡公分母的字母,取各分母所有字母的次冪的積;
(3)如果分母是多項式,則首先對多項式進行因式分解;
四、分式方程
※1.解分式方程的一般步驟:
①在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程;
②解這個整式方程;
③把整式方程的根代入原方程檢驗;
※2.列分式方程解應用題的一般步驟:
①審清題意;
②設未知數;
③根據題意找相等關系,列出(分式)方程;
④解方程,并驗根;
⑤寫出答案;
數學初二知識點總結
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的'穩定性。
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
數學初二因式分解知識點
一、分解因式
※1.把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
※2.因式分解與整式乘法是互逆關系。
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘.
二、提公共因式法
※1.如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法。
※2.概念內涵:
(1)因式分解的最后結果應當是“積”;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,ab+ac=a(b+c)
※3.易錯點點評:
(1)注意項的.符號與冪指數是否搞錯;
(2)公因式是否提徹底;
(3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉。
三、運用公式法
※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法。
※2.主要公式:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍。
※5.因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)因式分解的最后結果必須是幾個整式的乘積;
(4)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止。