初二數學復習時注意事項
2.對于復習階段作業的布置,少而精,有針對性,并且很抓訂正及改錯。
3.在試題的選擇上作到面面俱到,重點難點突出,不重不漏。
4.面向全體學生。由于學生在知識、技能方面的發展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應從大多數學生的實際出發,并兼顧學習有困難的和學有余力的學生。對學習有困難的學生,要特別予以關心,及時采取有效措施,激發他們學習數學的興趣,指導他們改進學習方法。減緩他們學習中的坡度,使他們經過努力,能夠達到大綱中規定的基本要求。對學有余力的學生,要通過講授選學內容和組織課外活動等多種形式,滿足他們的學習愿望,發展他們的數學才能。
5.重視改進教學方法,堅持啟發式,反對注入式。教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,并布置與課本內容相關、難度適中的嘗試題材由學生課前完成,教學中教師應幫助學生梳理學習的知識,指出重點和易錯點,解答學生復習時遇到的問題,使學生在學習中體會成功,調動學習積極性。
6.改革作業結構減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、易三檔作業,使每類學生都能在原有基礎上提高。
初二數學知識點歸納
數據整理和概率統計
考點1:確定事件和隨機事件
考核要求:
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;
(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點2:事件發生的可能性大小,事件的概率
考核要求:
(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小并排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。
考點3:等可能試驗中事件的概率問題及概率計算
考核要求:
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
(2)會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;
(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。
考點4:數據整理與統計圖表
考核要求:
(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;
(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,并能通過圖表獲取有關信息。
考點5:統計的含義
考核要求:
(1)知道統計的意義和一般研究過程;
(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。
初二數學基礎知識點
1、多邊形:由一些線段首尾順次連結組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點:多邊形每相鄰兩邊的公共端點叫做多邊形的頂點。
4、多邊形的對角線:連結多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線。
5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。
6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。
說明:一個多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內角,簡稱多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。
注意:多邊形的外角也就是與它有公共頂點的內角的鄰補角。
9、多邊形內角和定理:n邊形內角和等于(n-2)180°。
10、多邊形內角和定理的推論:n邊形的外角和等于360°。
說明:多邊形的外角和是一個常數(與邊數無關),利用它解決有關計算題比利用多邊形內角和公式及對角線求法公式簡單。無論用哪個公式解決有關計算,都要與解方程聯系起來,掌握計算方法。
初二數學重點知識點
一、不等關系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、準確"翻譯"不等式,正確理解"非負數"、"不小于"等數學術語.
非負數<===>大于等于0(≥0)<===>0和正數<===>不小于0
非正數<===>小于等于0(≤0)<===>0和負數<===>不大于0
二、不等式的基本性質
1、掌握不等式的基本性質,并會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那么a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,并且c>0,那么ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,并且c<0,那么ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那么a-b是正數;反過來,如果a-b是正數,那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三、不等式的解集:
1、能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
2、不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
3、不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
四、一元一次不等式:
1、只含有一個未知數,且含未知數的式子是整式,未知數的次數是1.像這樣的不等式叫做一元一次不等式.
2、解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.
3、解一元一次不等式的步驟:
①去分母;
②去括號;
③移項;
④合并同類項;
⑤系數化為1(不等號的改變問題)
4、一元一次不等式基本情形為ax>b(或ax
①當a>0時,解為;
②當a=0時,且b<0,則x取一切實數;
當a=0時,且b≥0,則無解;
③當a<0時,解為;
5、不等式應用的探索(利用不等式解決實際問題)
列不等式解應用題基本步驟與列方程解應用題相類似,即:
①審:認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如"大于"、"小于"、"不大于"、"不小于"等含義;
②設:設出適當的未知數;
③列:根據題中的不等關系,列出不等式;
④解:解出所列的不等式的解集;
⑤答:寫出答案,并檢驗答案是否符合題意.
初二數學分式方程知識點
一、理解定義
1、分式方程:含分式,并且分母中含未知數的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。
(2)解這個整式方程。
(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須舍去。
(4)寫出原方程的根。
“一化二解三檢驗四總結”
3、增根:分式方程的增根必須滿足兩個條件:
(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;(4)驗根;
注:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
5、分式方程解實際問題
步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。