亚洲伊人网站-亚洲伊人精品-亚洲伊人电影-亚洲一在线-久久国产一区二区-久久国产一区

高分網 > 高中學習方法 > 高三學習方法 > 高三數學 >

高考數學必背知識點

時間: 舒淇 高三數學

(xn)/=nxn-1特別地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)

2.導數的幾何物理意義:

k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。

V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.導數的應用:

①求切線的斜率。

②導數與函數的單調性的關系

已知

(1)分析的定義域;

(2)求導數

(3)解不等式,解集在定義域內的部分為增區間

(4)解不等式,解集在定義域內的部分為減區間。

我們在應用導數判斷函數的單調性時一定要搞清以下三個關系,才能準確無誤地判斷函數的單調性。以下以增函數為例作簡單的分析,前提條件都是函數在某個區間內可導。

③求極值、求最值。

注意:極值≠最值。函數f(x)在區間[a,b]上的值為極大值和f(a)、f(b)中的一個。最小值為極小值和f(a)、f(b)中最小的一個。

f/(x0)=0不能得到當x=x0時,函數有極值。

但是,當x=x0時,函數有極值f/(x0)=0

判斷極值,還需結合函數的單調性說明。

4.導數的常規問題:

(1)刻畫函數(比初等方法精確細微);

(2)同幾何中切線聯系(導數方法可用于研究平面曲線的切線);

(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關于次多項式的導數問題屬于較難類型。

關于函數特征,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。

導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。

高考數學必修知識點

不等式的基本性質:

性質1:如果a>b,b>c,那么a>c(不等式的傳遞性).

性質2:如果a>b,那么a+c>b+c(不等式的可加性).

性質3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.

性質5:如果a>b>0,c>d>0,那么ac>bd.

性質6:如果a>b>0,n∈N,n>1,那么an>bn,且.

例1:判斷下列命題的真假,并說明理由.

若a>b,c=d,則ac2>bd2;(假)

若,則a>b;(真)

若a>b且ab<0,則;(假)

若a若,則a>b;(真)

若|a|b2;(充要條件)

命題A:a命題A:,命題B:0說明:本題要求學生完成一種規范的證明或解題過程,在完善解題規范的過程中完善自身邏輯思維的嚴密性.

a,b∈R且a>b,比較a3-b3與ab2-a2b的大小.(≥)

說明:強調在最后一步中,說明等號取到的情況,為今后基本不等式求最值作思維準備.

例4:設a>b,n是偶數且n∈N_,試比較an+bn與an-1b+abn-1的大小.

說明:本例條件是a>b,與正值不等式乘方性質相比在于缺少了a,b為正值這一條件,為此我們必須對a,b的取值情況加以分類討論.因為a>b,可由三種情況(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到總有an+bn>an-1b+abn-1.通過本例可以開始滲透分類討論的數學思想.

高考數學知識點

兩角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

高考數學知識點總結

1.滿足二元一次不等式(組)的x和y的取值構成有序數對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數對(x,y)構成的集合稱為二元一次不等式(組)的解集。

2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區域)。

3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C<0(或≤0)。

4.已知平面區域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。

5.一個二元一次不等式表示的平面區域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區域是它的各個不等式所表示的平面區域的公共部分,注意邊界是實線還是虛線的含義。“線定界,點定域”。

6.滿足二元一次不等式(組)的整數x和y的取值構成的有序數對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區域內。

7.畫二元一次不等式Ax+By+C≥0所表示的平面區域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區域時,應把邊界畫成虛線。

8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側,則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側,則Ax0+By0+C與Ax1+Byl+C符號相反。

9.從實際問題中抽象出二元一次不等式(組)的步驟是:

(1)根據題意,設出變量;

(2)分析問題中的變量,并根據各個不等關系列出常量與變量x,y之間的不等式;

(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。

高考數學知識點歸納

1.圓

在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。

2.圓的相關特點

(1)徑

連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r

通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d

直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r

(2)弦

連接圓上任意兩點的線段叫做弦.在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。

(3)弧

圓上任意兩點間的部分叫做圓弧,簡稱弧,以“⌒”表示。

大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧,所以半圓既不是優弧,也不是劣弧。優弧一般用三個字母表示,劣弧一般用兩個字母表示。優弧是所對圓心角大于180度的弧,劣弧是所對圓心角小于180度的弧。

在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。

(4)角

頂點在圓心上的角叫做圓心角。

頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等于相同弧所對的圓心角的一半。

82899 主站蜘蛛池模板: 森林运动会作文三年级300字| 鼻子上长痘痘是什么原因引起的| 泷泽萝拉第二部| 少林七崁| 李采禫的电影| 接吻摸胸视频| 郭馨钰| 农村gaygayxxx| 张柏芝惊艳照片| 寻梦环游记英文| 王春宇| 体温单的绘制及图解| 日韩欧美动作影片| 男孩变女孩tg动画| 边缘行者 电影| 一年级数学一图四式的题| 天河电影演员表| 稻草狗在线观看| 大雄的恐龙| 抖音 下载| 104房间| 西海情歌歌词全文| 少妇荡乳情欲办公室| 三陪| 五年级上册学法大视野答案| 舌吻做爰视频舌吻| 幸福院 电视剧| 男上女下动态视频| 免费看污污| 送一百位女孩回家| 我的公主| 高志鹏| 爱情公寓海报| 简单的公告范文| 老炮儿演员表| 梁山伯与祝英台电影| 地理填充图册| 林圣闳最帅的10张照片| 好戏一出| 四 电影| 黄婉秋个人简历|