高二數學學習方法整理
1、掌握數學基礎技能
學習數學最主要的是要掌握數學的基礎技能,其中就有運算能力、操作技能、統計技能,還有就是我們的數學思維,這點各位重要,這些是我們學習數學的保障。數學有很多彎彎繞繞的思路,所以我們的思維要多變,不能直來直去。
2、 數學要歸納總結
學習數學離不開歸納總結,數學題型你這么做都是做不完的,要知道題海無涯,我們要做的是將數學考試各類題型都做上幾遍,反思總結,總結出各類題型的答題思路以及解題技巧,總結出答題的套路,這樣我們面對考試也就更有把握了,解題的難度也就降低了很多了。
3、 審題要擦亮眼睛
做數學的時候,很多人為了節省時間提高效率,就會在審題上節省時間,導致審題不仔細,看錯能內容或者看漏內容,導致扣掉分數。我們做題要擦亮眼睛,不要看錯形近字,有時候一個字的區別是很大的,比如“和或但” 等邏輯詞。這些會影響你的判斷的,所以要區分清楚。
學好高二數學的小竅門
1.學數學要善于思考,自己想出來的答案遠比別人講出來的答案印象深刻。
2.課前要做好預習,這樣上數學課時才能把不會的知識點更好的消化吸收掉。
3.數學公式一定要記熟,并且還要會推導,能舉一反三。
4.學好數學最基礎的就是把課本知識點及課后習題都掌握好。
5.數學80%的分數來源于基礎知識,20%的分數屬于難點,所以考120分并不難。
6.數學需要沉下心去做,浮躁的人很難學好數學,踏踏實實做題才是硬道理。
7.數學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。
8.數學最主要的就是解題過程,懂得數學思維很關鍵,思路通了,數學自然就會了。
9.數學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗了。
10.數學題目不會做,原因之一就是例題沒研究明白,所以數學書上的例題絕對不要放過。
高二數學知識點
等比數列求和公式
(1)等比數列:a(n+1)/an=q(n∈N)。
(2)通項公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);
(3)求和公式:Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項數)
(4)性質:
①若m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;
②在等比數列中,依次每k項之和仍成等比數列.
③若m、n、q∈N,且m+n=2q,則am×an=aq^2
(5)"G是a、b的等比中項""G^2=ab(G≠0)".
(6)在等比數列中,首項a1與公比q都不為零.注意:上述公式中an表示等比數列的第n項。
等比數列求和公式推導:Sn=a1+a2+a3+...+an(公比為q)q_Sn=a1_q+a2_q+a3_q+...+an_q=a2+a3+a4+...+a(n+1)Sn-q_Sn=a1-a(n+1)(1-q)Sn=a1-a1_q^nSn=(a1-a1_q^n)/(1-q)Sn=(a1-an_q)/(1-q)Sn=a1(1-q^n)/(1-q)Sn=k_(1-q^n)~y=k_(1-a^x)。
高二數學知識點必背
銳角三角函數公式
sinα=∠α的對邊/斜邊
cosα=∠α的鄰邊/斜邊
tanα=∠α的對邊/∠α的鄰邊
cotα=∠α的鄰邊/∠α的對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推導
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
輔助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
高二數學常考知識點
函數的性質:
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用于多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。
判別方法:定義法,圖像法,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期。
應用:求函數值和某個區間上的函數解析式。