初級智力測試題及答案
初級智力測試題
450×4
【2】現在共有100匹馬跟100塊石頭,馬分3種,大型馬;中型馬跟小型馬。其中一匹大馬一次可以馱3塊石頭,中型馬可以馱2塊,而小型馬2頭可以馱一塊石頭。問需要多少匹大馬,中型馬跟小型馬?(問題的關鍵是剛好必須是用完100匹馬) 6種結果
【3】1=5,2=15,3=215,4=2145那么5=?
因為1=5,所以5=1.
【4】有2n個人排隊進電影院,票價是50美分。在這2n個人當中,其中n個人只有50美分,另外n個人有1美元(紙票子)。愚蠢的電影院開始賣票時1分錢也沒有。問:有多少種排隊方法使得每當一個擁有1美元買票時,電影院都有50美分找錢
注:1美元=100美分擁有1美元的人,擁有的是紙幣,沒法破成2個50美分
本題可用遞歸算法,但時間復雜度為2的n次方,也可以用動態規劃法,時間復雜度為n的平方,實現起來相對要簡單得多,但最方便的就是直接運用公式:排隊的種數=(2n)!/[n!(n+1)!]。
如果不考慮電影院能否找錢,那么一共有(2n)!/[n!n!]種排隊方法(即從2n個人中取出n個人的組合數),對于每一種排隊方法,如果他會導致電影院無法找錢,則稱為不合格的,這種的排隊方法有(2n)!/[(n-1)!(n+1)!](從2n個人中取出n-1個人的組合數)種,所以合格的排隊種數就是(2n)!/[n!n!]- (2n)!/[(n-1)!(n+1)!] =(2n)!/[n!(n+1)!]。至于為什么不合格數是(2n)!/[(n-1)!(n+1)!],說起來太復雜,這里就不講了。
【5】一個人花8塊錢買了一只雞,9塊錢賣掉了,然后他覺得不劃算,花10塊錢又買回來了,11塊賣給另外一個人。問他賺了多少?
2元
【6】有一種體育競賽共含M個項目,有運動員A,B,C參加,在每一項目中,第一,第二,第三名分別的X,Y,Z分,其中X,Y,Z為正整數且X>Y>Z。最后A得22分,B與C均得9分,B在百米賽中取得第一。求M的值,并問在跳高中誰得第二名。
因為ABC三人得分共40分,三名得分都為正整數且不等,所以前三名得分最少為6分,40=5*8=4*10=2*20=1*20,不難得出項目數只能是5.即M=5.
A得分為22分,共5項,所以每項第一名得分只能是5,故A應得4個一名一個二名.22=5*4+2,第二名得1分,又B百米得第一,所以A只能得這個第二.
B的5項共9分,其中百米第一5分,其它4項全是1分,9=5+1=1+1+1.即B除百米第一外全是第三,跳高第二必定是C所得.
【7】斗地主附殘局
地主手中牌2、K、Q、J、10、9、8、8、6、6、5、5、3、3、3、3、7、7、7、7
長工甲手中牌大王、小王、2、A、K、Q、J、10、Q、J、10、9、8、5、5、4、4
長工乙手中牌2、2、A、A、A、K、K、Q、J、10、9、9、8、6、6、4、4
三家都是明手,互知底牌。要求是:在三家都不打錯牌的情況下,地主必須要么輸要么贏。問:哪方會贏?
無解地主怎么出都會輸
【8】一樓到十樓的每層電梯門口都放著一顆鉆石,鉆石大小不一。你乘坐電梯從一樓到十樓,每層樓電梯門都會打開一次,只能拿一次鉆石,問怎樣才能拿到最大的一顆?
先拿下第一樓的鉆石,然后在每一樓把手中的鉆石與那一樓的鉆石相比較,如果那一樓的鉆石比手中的鉆石大的話那就把手中的鉆石換成那一層的鉆石。
【9】U2合唱團在17分鐘 內得趕到演唱會場,途中必需跨過一座橋,四個人從橋的同一端出發,你得幫助他們到達另一端,天色很暗,而他們只有一只手電筒。一次同時最多可以有兩人一起 過橋,而過橋的時候必須持有手電筒,所以就得有人把手電筒帶來帶去,來回橋兩端。手電筒是不能用丟的方式來傳遞的。四個人的步行速度各不同,若兩人同行則 以較慢者的速度為準。Bono需花1分鐘過橋,Edge需花2分鐘過橋,Adam需花5分鐘過橋,Larry需花10分鐘過橋。他們要如何在17分鐘內過 橋呢?
2+1先過 2
然后1回來送手電筒 1
5+10再過 10
2回來送手電筒 2
2+1過去 2
總共2+1+10+2+2=17分鐘
【10】1,11,21,1211,111221,下一個數是什么?
下行是對上一行的解釋 所以新的應該是3個1 2個2 1個1 :312211