初中數(shù)學(xué)公式大全(最全)(3)
137 定理把圓分成n(n≥3):
⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138 定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139 正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140 定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142 正三角形面積√3a/4 a表示邊長
143 如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144 弧長計算公式:L=n兀R/180
145 扇形面積公式:S扇形=n兀R^2/360=LR/2
146 內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
(還有一些,大家?guī)脱a充吧)
實用工具:常用數(shù)學(xué)公式
公式分類公式表達(dá)式
乘法與因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理
判別式
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac>0 注:方程有兩個不等的實根
b2-4ac0
拋物線標(biāo)準(zhǔn)方程y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積S=c*h 斜棱柱側(cè)面積S=c‘*h
正棱錐側(cè)面積S=1/2c*h‘ 正棱臺側(cè)面積S=1/2(c+c‘)h‘
圓臺側(cè)面積S=1/2(c+c‘)l=pi(R+r)l 球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h 圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H 圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S‘L 注:其中,S‘是直截面面積,L是側(cè)棱長
柱體體積公式V=s*h 圓柱體V=pi*r2h